

СЧЁТЧИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ОДНОФАЗНЫЕ МНОГОТАРИФНЫЕ HERA MT 1

Руководство по эксплуатации TACB.411152.002.01 РЭ Рев. 1

По вопросам продаж и поддержки обращайтесь:

Архангельск (в 182)63-90-72 Астана +7/17/12/72-132 Астражань (8512)99-46-04 Барнаул (8582)73-04-60 Белекород (4722)40-22-84 Брянск (4832)99-03-52 Впадивосток (423)249-28-31 Вологорад (8412/78-03-48 Вологорад (8412/78-03-48 Вологорад (8412/8-03-48 Вологорад (8412/8-03-48) Вологорад (8412/8-03-48) Изваново (493)277-34-06 Ижевок (3412/26-03-58) Имунок (3412/26-03-58)

Калинистрав (4012)72-03-81 Калуга (4842)95-04-62 Киров (3842)85-04-62 Киров (3832)86-02-04 Краснодар (861)203-40-90 Краснорок (391)204-83-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Москва (495)28-04-73 Москва (495)28-04-93 Набережные Челны (8552)20-53-41 Никокий Навгора (831)422-98-12

Казань (843)206-01-48

Новолуанеци (3843)20-46-81 Новолабирис (383)227-36-73 Омск (3812)21-46-40 Орен (4862)44-53-42 Оренбург (3522)37-68-04 Певла (8412)22-31-18 Пермы (342)205-81-47 Ростов-на-Добу (863)308-18-15 Рязань (4912)46-61-64 Савист-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферолого (3652)67-13-56 CMO/netrox (4812)29-41-54 Covuy (862)25-72-31 Crasponomo (8652)20-65-13 Cypyrr (3462)7-98-35 Taepp. (4822)63-31-35 Tomox (3822)98-41-53 Tyma (4872)74-02-29 Tyma (4872)74-02-29 Tyma (4872)29-80-14 Van (347)229-48-12 Xaбapoack (4212)24-29-90-04 Vennődevic X (351)202-03-61 Vepenoseu (8202)49-02-64 Rypocnasmi. (4852)68-52-98

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69

Эл. почта: nvb@nt-rt.ru || Сайт: http://neva.nt-rt.ru/

Содержание

Введение			3 стр.
		сание и работа	
	1.1	Назначение	3 стр.
	1.2	Условия эксплуатации	
	1.3	Требования безопасности	5 стр.
	1.4	Электромагнитная совместимость	6 стр.
	1.5	Характеристики	6 стр.
	1.6	Функциональные возможности	9 стр.
	1.7	Описание функций	12 стр.
	1.8	Устройство и работа	16 стр.
	1.9	Маркировка и упаковка	17 стр.
2	2 Использование по назначению		20 стр.
	2.1	Эксплуатационные ограничения	20 стр.
	2.2	Подготовка к эксплуатации	_20 стр.
	2.3	Эксплуатация счётчика	22 стр.
	2.4	Техническое обслуживание	30 стр.
3	Tpai	нспортирование и хранение	32 стр.
Поверка			32 стр.
Приложение А			33 стр.
Приложение Б			35 стр.

Введение

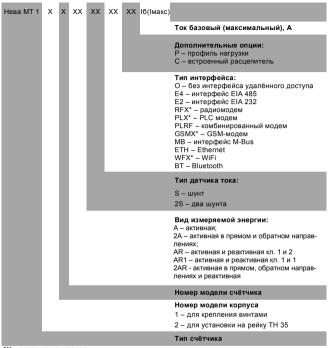
Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы счётчика электрической энергии НЕВА МТ 1 (далее – счётчик), с его конструкцией, правилами эксплуатации, технического обслуживания, транспортирования и хранения. Руководство содержит сведения об основных технических характеристиках счётчика, а также информацию о гарантиях изготовителя и заметки по эксплуатации изделия.

К работе со счётчиком допускаются лица изучившие руководство по эксплуатации и имеющие допуск к работе с электроустановками напряжением до 1000 В.

1 Описание и работа

1.1 Назначение

Счётчик предназначен для измерения и учета потребленной активной энергии в однофазных сетях переменного тока дифференцированно по временным зонам суток.


Счётчик может использоваться в автоматизированных информационноизмерительных системах контроля и учета электроэнергии (АИИС КУЭ) в качестве первичного датчика, информация с которого считывается по интерфейсам.

Счётчик предназначен для установки внутри помещений или в шкафах обеспечивающих дополнительную защиту от воздействий окружающей среды.

Счётчик имеет исполнения отличающиеся:

- конструктивным исполнением:
- количеством измерительных элементов;
- типом измеряемых величин;
- величинами базового и максимального токов:
- наличием и типом интерфейсов:
- наличием встроенного расцепителя:
- количеством дополнительных выходов;
- количеством дополнительных входов.

Счётчики обозначаются в соответствии со структурой условного обозначения, приведённой на рисунке 1.

*X – исполнение модема

Рис. 1 Структура условного обозначения счётчиков HEBA MT 1

1.2 Условия эксплуатации

- 1.2.1 Конструкция счётчика соответствует требованиям ГОСТ 31818.11-2012.
- 1.2.2 Нормальные условия применения:
- температура окружающего воздуха (23±2)°С:
- относительная влажность воздуха 30 80%;
- атмосферное давление 84 106 кПа или 630 795 мм рт. ст.;
- частота питающей сети (50 ± 0,5) Гц;

- форма кривой переменного напряжения питающей сети синусоидальная с коэффициентом несинусоидальности не более 5%.
- 1.2.3 По устойчивости к климатическим воздействиям счётчик соответствует группе 4 по ГОСТ 22261 94 с расширенным рабочим диапазоном температур.

Рабочие условия применения:

- температура окружающего воздуха от минус 40 до плюс 70°С;
- относительная влажность воздуха не более 90% при 30°С;
- атмосферное давление 70 106,7 кПа или 537 800 мм рт. ст.
- 1.2.4 По устойчивости к механическим воздействиям счётчик соответствует группе 3 по ГОСТ 22261 94 и требованиям ГОСТ 31818.11-2012.
- 1.2.5 Корпус счётчика выдерживает воздействие молотком пружинного действия с кинетической энергией (0,20 + 0,02) Дж.
- 1.2.6 Корпус счётчика без упаковки выдерживает удары с максимальным ускорением 30 q (300 м/с2) и длительностью 18 мс.
- 1.2.7 Счётчик вибропрочен и выдерживает испытание на вибрацию в соответствии с требованиями ГОСТ 31818.11-2012.
- 1.2.8 Корпус счётчика имеет степень защиты от доступа к опасным частям, от попадания пыли и воды IP51 в соответствии с ГОСТ 14254 96.
- 1.2.9 Счётчики предназначены для установки в помещениях или вне помещений в закрытых шкафах, защищающих от воздействий окружающей среды.
- 1.2.10 Внешний вид счётчиков, габаритные и установочные размеры приведены в приложении А.

1.3 Требования безопасности

- 1.3.1 По безопасности счётчик удовлетворяет требованиям ГОСТ 12.2.091 2002.
- 1.3.2 По степени защиты от поражения электрическим током счётчик относится к оборудованию класса II.
- 1.3.3 Изоляция счётчика между цепями тока и напряжения и землёй, а так же между цепями тока и напряжения и низковольтными цепями (испытательные выходы, интерфейсные выходы) выдерживает воздействие импульсного напряжения 6 кВ.
- 1.3.4 Изоляция счётчика между цепями тока и напряжения и землёй, а так же между цепями тока и напряжения и низковольтными цепями (интерфейсные цепи и испытательные выходы) в течение 1 минуты выдерживает воздействие напряжение переменного тока 4 кВ.
- 1.3.5 Сопротивление изоляции между корпусом и электрическими цепями счётчика:
- не менее 20 Мом при нормальных условиях;
- не менее 7 МОм при температуре окружающего воздуха (40 ± 2) °С и относительной влажности воздуха 93 %.
- 1.3.6 Превышение температуры внешней поверхности счётчика при максимальном токе в цепи тока и при напряжении 264 В не более 25°C.
- 1.3.7 Клеммная колодка, крышка клеммной колодки и корпус счётчика обеспечивают безопасность от распространения огня и не поддерживают горение при тепловой

перегрузке находящихся под напряжением частей при контакте с ними.

- 1.3.8 Монтаж счётчика должен производиться в соответствии с правилами эксплуатации электроустановок и настоящим руководством по эксплуатации специалистами имеющими допуск к работе с электрооборудованием до 1000 В и квалификационную группу по электробезопасности не ниже III.
- 1.3.9 Не устанавливать счётчик вблизи отопительных приборов.

1.4 Электромагнитная совместимость

- 1.4.1 Счётчик устойчив к провалам и кратковременным прерываниям напряжения питания.
- 1.4.2 По уровню излучаемых индустриальных радиопомех соответствует оборудованию класса Б по ГОСТ 31818.11-2012.
- 1.4.3 Счётчик устойчив к воздушным электростатическим разрядам напряжением 15 кВ
- 1.4.4 Счётчик устойчив к воздействию радиочастотного электромагнитного поля напряженностью 30 В/м в полосе частот от 80 до 2ГГц.
- 1.4.5 Счётчик устойчив к наносекундным импульсным помехам напряжением 4 кВ в цепях питания.
- 1.4.6 Счётчик устойчив к кондуктивным помехам, наведенным радиочастотными электромагнитными полями напряжением 10 В в полосе частот от 80 до 150 МГц.
- 1.4.7 Счётчик устойчив к воздействию микросекундных импульсных помех большой энергии напряжением 4 кВ длительностью 50 мкс.
- 1.4.8 Модемы встраиваемые в счётчики удовлетворяют требованиям по нормам эмиссии гармонических составляющих потребляемого тока для технических средств класса D по ГОСТ 30804 3.2 2013

1.5 Характеристики

- 1.5.1 Счётчики выпускаются в соответствии с ГОСТ 31818.11-2012, ГОСТ 31819.21-2012 и ГОСТ 31819.23-2012.
- 1.5.2 Счётчики имеют счётный механизм учитывающий энергию в киловатт-часах и киловар-часах.
- 1.5.3 Счётчики начинают функционировать не позднее чем через 5 с после того, как к его зажимам будет приложено номинальное напряжение.
- 1.5.4 При отсутствии тока в цепи тока и поданном напряжении счётчики не измеряют энергию не имеют самохода.
- 1.5.5 Основные технические характеристики счётчика приведены в таблице 1.1
- 1.5.6 Влияние самонагрева. Изменение основной погрешности, вызванное нагревом счётчиков максимальным током, протекающим в последовательных цепях не превышает 0.7%.
- 1.5.7 Счётчики выдерживают кратковременные перегрузки током, превышающим в 30 раз максимальный ток, в течение одного полупериода при номинальной частоте. Изменение основной погрешности, вызванное кратковременными перегрузками током,

не превышает 1.5%.

- 1.5.8 Счетчики устойчивы к воздействию входного напряжения переменного тока 420 В.
- 1.5.9 Дополнительные погрешности счётчика, вызываемые изменением влияющих величин, не превышают значений установленных в ГОСТ 31819.21 и ГОСТ 31819.23.

Таблина 1 1

таолица т.т	
Наименование параметра	Значение
Класс точности при измерении активной энергии по ГОСТ Р 31819.21-2012	1
Класс точности при измерении реактивной энергии* по ГОСТ Р 31819.23-2012	1 или 2
Номинальное напряжение Uном, В	230
Расширенный диапазон рабочих напряжений, В	от 161 до 264
Базовый (максимальный) ток, А	5(60); 5(80); 5(100);
Частота сети, Гц	50±2,5
Стартовый ток (порог чувствительности)	0,004 l ₆ *
Номинальный размыкаемый ток, А	40, 60 или 80
Полная мощность, потребляемая: в цепи напряжения не более, В-А в цепи напряжения, для счётчиков со встроенным PLC или GSM модемом, не более, В-А в цепи тока не более. В-А	2,0 6,0 0.2
Активная мощность, потребляемая в цепи напряжения не более, Вт для исполнения счётчика со встроенным PLC или GSM моде-	1,0
мом, не более, Вт Точность хода часов счётчика, с/сутки, не более: — при нормальных условиях — при отсутствии напряжения питания	± 0,5 ± 1
Температурный коэффициент точности хода часов не более, с/(°С²-сутки)	0,002
Количество тарифов, не менее	4
Масса, кг, не более	0,75
Средний срок службы, лет, не менее	30
Средняя наработка на отказ, ч, не менее	280000

^{*} I_б – базовый ток счётчика.

^{1.5.10} Счётчик имеет электрический испытательный выход с возможностью программирования вывода импульсов активной энергии, реактивной энергии или секундных импульсов для проверки точности хода часов. Максимально допустимый ток выхода в состоянии «замкнуто» 30 мА. Максимально допустимое напряжение 24 В. Импеданс выходной цепи в состоянии «замкнуто» не более 200 Ом, в состоянии «разомкнуто» не менее 50 кОм. Длительность импульса на испытательном выходе активной энергии не менее 15 мс. Период следования импульсов на испытательном выходе проверки точности хода часов 1 с.

- 1.5.11 На испытательный выход счётчика выдаются импульсы об энергопотреблении.
 Связь между потреблённой активной или реактивной энергий и количеством импульсов на испытательном выходе постоянная счётчика указана на щитке.
- 1.5.12 Счётчик имеет возможность подключения внешнего резервного источника питания с входным напряжением 9-30 В.
- 1.5.13 Счётчики могут оснащаться дополнительными электрическими испытательными выходами и входами.
- 1.5.14 Скорость обмена данными через оптический порт 9600 бит/с. Начальная скорость обмена 300 бит/с.
- 1.5.15 Скорость обмена данными через интерфейсы удалённого доступа программируемая, от 300 до 115200 бит/с. Начальная скорость равна скорости обмена.

По умолчанию, скорость обмена - 9600 бит/с.

- 1.5.16 Нагрузка счётчика на интерфейсную линию ¼ стандартной нагрузки для интерфейса EIA 485. Максимальной количество счётчиков на линии 127.
- 1.5.17 Счётчики НЕВА МТ 115 PLRFPC оснащены miniNIC модемом с радиочастотным (RF) каналом передачи данных и каналом передачи данных по силовой сети (PLC).

Параметры сигналов при передаче данных по силовой сети соответствуют требованиям ГОСТ Р 51317.3.8-99. При передаче сигналов используется модуляция DCSK.

Рабочая частота RF передатчика 433,9 МГц. Способ модуляции GFSK.

Мощность сигнала RF передатчика не более 10 дБм.

Чувствительность RF приёмника минус 118 дБм.

1.5.18 Счётчики НЕВА МТ 115 RF1.1P(C), НЕВА МТ 115 RF1.2P(C) и НЕВА МТ 115 RF2P(C) оснащены ZigBee модемами, осуществляющими передачу данных в разрешённом диапазоне частот 2,405-2,485 ГГц. Модемы соответствуют стандарту IFFF 802 15 4 – 2006

Для исполнений с модемами RF2 номер настроенной сети – 29AC, канал – В.

Модемы соответствуют стандарту IEEE 802.15.4 - 2006.

- 1.5.19 Счётчики оснащаются датчиком магнитного поля.
- 1.5.20 Счётчики имеют подсветку ЖКИ.
- 1.5.21 Номинальный и максимальный размыкаемый ток для счётчиков с максимальным током 60 A-40 A и 80 A, для счётчиков с максимальным током 100 A-60 A и 100 A соответственно. Счётчики выдерживают 30 000 циклов включение/отключение при номинальном размыкаемом токе и омической нагрузке, 30 000 циклов при токе 10 A при индуктивной нагрузке и соѕ ϕ = 0,4 и 75 000 циклов при отсутствии нагрузки.
- 1.5.22 Счётчики при максимальном размыкаемом токе выдерживают 5 000 циклов включения/отключения омической нагрузки.
- 1.5.23 Номинальное размыкаемое напряжение 230 В.
- 1.5.24 Установленный межповерочный интервал счётчика 16 лет.
- 1.5.25 Время хранения информации в памяти счётчика при отсутствии напряжения питания не менее 30 лет.
- 1.5.26 Предприятие изготовитель оставляет за собой право вносить изменения в конструкцию отдельных узлов и деталей счетчика, не ухудшающих технических характеристик и потребительских качеств изделия.

1.6 Функциональные возможности

- 1.6.1 Информация об энергопотреблении отображается на семиразрядном жидкокристаллическом индикаторе (далее ЖКИ) счётчика в киловатт-часах и киловарчасах до точки, в десятых и сотых долях киловатт-часа и киловар-часа после точки. Емкость учета счетного механизма при максимальном токе не менее 5 лет.
- 1.6.2 Счётчик ведёт отсчёт текущего времени и даты. При отсутствии внешнего питания часы счётчика работают от встроенной литиевой батареи.
- 1.6.3 Счётчик ведёт учёт активной и реактивной энергии нарастающим итогом всего и по четырём тарифам в соответствии с заданными тарифными зонами суток.
- 1.6.4 Счётчик сохраняет значения активной и реактивной энергии нарастающим итогом всего и по тарифам на конец месяца. за 36 предыдущих месяцев.
- 1.6.5 Счётчик сохраняет значения активной и реактивной энергии за расчетный период всего и по тарифам на конец месяца, за 36 предыдущих месяцев.
- 1.6.6 Счётчик сохраняет значения активной и реактивной энергии нарастающим итогом всего и по тарифам на конец суток, за 128 предыдущих дней.
- 1.6.7 Счётчик сохраняет значения активной и реактивной энергии за расчетный период всего и по тарифам на конец суток, за 128 предыдущих дней.
- 1.6.8 Счётчик измеряет и сохраняет в памяти максимальные активные и реактивные мощности, усреднённые на заданном интервале раздельно по тарифным зонам суток в текущем месяце и за 36 предыдущих месяцев.
- 1.6.9 Счётчик измеряет и отображает на ЖКИ параметры сети:
- среднеквадратичное значение тока в фазном и нупевом проводе*:
- среднеквадратичное значение напряжения:
- среднеквадратичное значение частоты сети:
- величину активной, реактивной* и полной мощностей;
- коэффициент активной мощности и характер нагрузки.
- *- для исполнений счётчиков, имеющих функцию измерения соответствующих параметров.
- 1.6.10 Счетчик сохраняет в памяти 8 профилей со значениями измеряемых параметров сети с глубиной хранения до 65535 значений по каждому профилю.
- 1.6.11 Счётчик отключает нагрузку при превышении порогов напряжения, лимита мощности, лимита энергии, неравенстве токов в фазном и нулевом проводе, при воздействии магнитного поля с индукцией более 300 мТл в течение 10 секунд.
- 1.6.12 Счётчик сохраняет в памяти 3 значения активной и реактивной энергии нарастающим итогом по команде по интерфейсу.
- 1.6.13 Счётчик имеет функции измерения параметров качества электроэнергии (измерение установившихся отклонений напряжения и частоты в соответствии с ГОСТ 30804.4.30, класс S).
- 1.6.14 Счётчик позволяет осуществлять ручную коррекцию времени на ±30 секунд один раз в неделю и коррекцию времени по команде на ±9 секунд один раз в день.
- 1.6.15 Счётчик сохраняет в памяти информацию о времени и дате:
- отключений и включений питания, 32 события;
- перепрограммирования параметров, 32 события:
- изменения времени и даты во встроенных часах, 32 события;

- очистки месячных архивов максимальной мощности, 16 событий;
- очистки профилей, 16 событий;
- очистки дневных и суточных архивов активной и реактивной энергии. 16 событий:
- сброса микроконтроллера в результате критической электромагнитной обстановки. 16 событий:
- изменения направления тока, 32 события;
- снятия крышки клеммной колодки, 32 события;
- вскрытия корпуса, 32 события;
- влияния магнитного поля. 32 события:
- возникновения ошибок. 32 события:
- изменения состояния нагрузки, с указанием причины отключения, 32 события;
- коррекции времени, 32 события;
- превышения порогов напряжения, с указанием величины напряжения, 32 события;
- превышения лимита мощности, с указанием величины мощности, 32 события;
- превышения лимита энергии, с указанием величины энергии, 32 события;
- неравенстве токов в фазном и нулевом проводе, 32 события:
- отклонения значений напряжения сети от установленных норм, с указанием отклонившихся величин, 32 события;
- отклонения значений частоты сети от установленных норм, с указанием отклонившихся величин. 32 события.
- 1.6.16 Счётчик имеет функцию реверсивного счетного механизма, обеспечивающую увеличение показаний счетного механизма при изменении направления тока на противоположное.
- 1.6.17 Счётчик имеет оптический испытательный выход. Импульсы на оптический испытательный выход выдаются в соответствии с постоянной счётчика.
- 1.6.18 Счётчик в зависимости от исполнения оснащён интерфейсом удалённого доступа и оптическим портом по ГОСТ IEC 61107–2012. Протокол обмена по интерфейсам соответствует ГОСТ IEC 61107-2012.
- 1.6.19 Счётчик позволяет пользователю программировать следующие параметры:
- текущие дату и время:
- 36 графиков тарификации с указанием времени начала 48 тарифных зон суток с указанием тарифа раздельно для каждого дня недели;
- 12 дат начала сезона;
- 32 даты исключительных дней с указанием тарифного расписания действующего на каждый день;
- пароли для записи и чтения, только чтения памяти данных;
- информацию о месте установки прибора;
- скорость обмена для интерфейсов удаленного доступа;
- серийный номер;
- адрес, для удалённого доступа;
- набор параметров, выводимых на ЖКИ в циклическую индикацию;
- коэффициент автоматической коррекции точности хода часов;
- константу активной и реактивной энергии, превышающую номинальную в 10 раз;

- конфигурационные данные*;
- интервал усреднения максимальной мощности от 1 до 60 минут с дискретностью 1 минута:
- параметры для 8 профилей (измеряемые величины, способы измерения и глубину хранения данных)*;
- время усреднения и значения порогов напряжения*;
- время усреднения, значение лимита мощности и коэффициент информирования о превышении лимита*;
- значение лимита энергии, коэффициент информирования о превышении лимита*;
- время усреднения неравенства токов в фазном и нулевом проводе*;
- значения напряжения и частоты для фиксации отклонений параметров качества электроэнергии*;
- режим "тихой" работы;
- информацию, отображаемую на 3 дополнительных кадрах индикации.
 *-работа функций описана в разлеле 1 7.
- 1.6.20 По интерфейсам могут быть считаны следующие параметры:
- значения активной, реактивной положительной и реактивной отрицательной энергии нарастающим итогом на текущее время всего и по тарифам;
- значения активной, реактивной положительной и реактивной отрицательной энергии на конец месяца нарастающим итогом и по тарифам, за 36 предыдущих месяцев;
- значения активной, реактивной положительной и реактивной отрицательной энергии за предыдущий месяц всего и по тарифам, за 36 предыдущих месяцев.
- значения активной, реактивной положительной и реактивной отрицательной энергии на конец суток нарастающим итогом и по тарифам, за 128 предыдущих дней:
- значения активной, реактивной положительной и реактивной отрицательной энергии за предыдущие сутки всего и по тарифам, за 128 предыдущих дней.
- Счётчик измеряет и сохраняет в памяти максимальные активные и реактивные мощности, усреднённые на заданном интервале раздельно по тарифным зонам суток в текущем месяце и за 36 предыдущих месяцев.
- мгновенные значения параметров сети;
- профили измеренных параметров;
- статус состояния счётчика;
- статус журналов событий;
- длительность отклонения значений напряжения и частоты сети от установленных норм за текущие сутки и за 128 предыдущих дней;
- все параметры, перечисленные в п. 1.6.19 за исключением пароля;
- журналы событий перечисленные в п. 1.6.15.
- 1.6.21 Счётчики обеспечивают индикацию при отсутствии питания.

При выходе из строя ЖКИ информация может быть считана через оптопорт или интерфейс удаленного доступа.

1.7 Описание функций

Счётчик ведёт учёт активной и реактивной энергии по четырём тарифам в соот-171 ветствии с установленным тарифным расписанием.

Счётчик позволяет устанавливать 36 графиков тарификации с 48 тарифными зонами суток (с шагом в 30 минут). Графики тарификации устанавливаются раздельно для каждого дня недели на сезон. Всего может быть установлено 12 сезонов.

Счётчик позволяет устанавливать 32 даты исключительных дней с указанием графика тарификации на каждый день.

1.7.2 Счетчик сохраняет в памяти 8 профилей со значениями измеряемых параметров сети (п. 1.6.9) по каждому из способов измерения на программируемых временных интервалах (1, 3, 5, 10, 15, 30 или 60 минут), с программируемой глубиной хранения до 65535 значений по каждому профилю. Фиксируемые в профилях данные могут быть рассчитаны одновременно не более чем для двух временных интервалов.

Глубина профиля при временном интервале 30 минут составляет 1365 суток.

Способы измерения параметров сети для каждого из двух возможных интервалов усреднения:

среднее значение измеренного параметра \overline{X} за временной интервал:

$$\overline{X} = \sum_{i}^{k} N_{i}$$
, где N_{i} - измеренное значение параметра, k – количество измерений; усредненное значение параметра. X на временном интервале:

усредненное значение параметра X на временном интервале:

$$X = rac{\int\limits_a^\infty N}{(b-a)}$$
 , где N_i - измеренное значение параметра, a – начало интервала усред-

- нения, b окончание интервала усреднения, (b-a) интервал усреднения в минутах; минимальное мгновенное значение измеренного параметра за временной интер-
- максимальное мгновенное значение измеренного параметра за временной интервал.
- 1.7.3 Счётчик позволяет программировать конфигурационные данные с возможностью включения функций:
- отключения нагрузки при снижении напряжения ниже допустимого значения и при превышении порога напряжения (см. п.1.7.4);
- отключения нагрузки при превышении лимита мощности (см. п.1.7.5);
- отключения нагрузки при превышении лимита энергии (см. п.1.7.6);
- учёта активной и реактивной энергии по тарифу 4 при превышении лимита мощности или лимита энергии (см. п.1.7.7):
- отключения нагрузки при обнаружении неравенства токов в фазном и нулевом проводе (см. п.1.7.8):
- подключения нагрузки длительным нажатием кнопки (см. п.1.7.9);
- автоматического подключения нагрузки (см. п.1.7.9);
- отключения нагрузки при обнаружении сильного магнитного поля (см. п.1.7.10);

- режима Master (см. п.1.7.11);
- звукового информирования, режима "Тихой" работы (см. п.1.7.12);
- постоянной подсветки ЖКИ:
- удалённого программирования:
- чтения без пароля:
- очистки дневных и месячных архивов потребления:
- задержки данных при обмене (15 секунд).
- 1.7.4 Счётчик отключает нагрузку при снижении измеряемого напряжения ниже допустимого значения и превышении порога напряжения. Для работы функции необходимо запрограммировать значения нижнего и верхнего порогов напряжения, времени усреднения и времени задержки автоматического подключения нагрузки, активировать соответствующую функцию в конфигурации счетчика.

При снижении или превышении порогов напряжения зуммер счётчика издает звуковой сигнал 1 раз в 2 секунды. При отклонении напряжения длительностью, равной времени усреднения, размыкаются контакты встроенного расцепителя, и нагрузка отключается. В статусе состояния счётчика фиксируется соответствующая ошибка. При этом на ЖКИ счётчика отображается сообщение "oFF LU 1" или "oFF LU 2" для нижнего и верхнего предела, соответственно. После возвращения напряжения сети допустимый диапазон в статусе состояния счётчика снимается ошибка и начинается отсчет времени задержки автоматического подключения нагрузки. По истечению времени задержки нагрузка подключается и возвращается циклический режим индикации.

В память счётчика в соответствующий журнал фиксируются дата и время начала и окончания события, значение усредненного напряжения. Информация о событии фиксируется в журнал независимо от настроек конфигурации счётчика.

1.7.5 Счётчик отключает нагрузку при превышении лимита мощности. Для работы функции необходимо установить значения лимита мощности, времени усреднения и активировать соответствующую функцию в конфигурации счетчика.

Расчет усредненной мощности производится на заданном интервале усреднения с шагом 1 минута. Рекомендуется устанавливать значение интервала усреднения не менее 1 минуты.

При превышении усредненной мощности на заданном интервале усреднения размыкаются контакты встроенного расцепителя, и нагрузка отключается. В статусе состояния счётчика фиксируется соответствующая ошибка. При этом на ЖКИ счётчика отображается сообщение "oFF LP". По завершению события превышения лимита мощности в статусе состояния счётчика снимается ошибка и в соответствующий журнал событий фиксируются дата и время начала и окончания превышения мощности, значение усредненной мощности на рассчитанном интервале. Информация о событии фиксируется в журнал независимо от настроек конфигурации счётчика.

Подключение нагрузки осуществляется командой по интерфейсу, функциями автоматического подключения и подключения длительным нажатием кнопки (см. п.1.7.9).

Счётчик осуществляет информирование миганием подсветкой и звуковым сигналом (1 раз в 10 секунд) о приближении лимиту мощности. Для этого задается коэф-

фициент информирования, равный доле от значения лимита. По умолчанию, коэффициент равен 90% от значения лимита мощности.

1.7.6 Счётчик отключает нагрузку при превышении лимита энергии. Для работы функции необходимо установить значения лимита энергии, выбрать режим работы и активировать соответствующую функцию в конфигурации счетчика.

Функция лимита энергии может работать как в режиме лимита энергии нарастающим итогом, так и в режиме лимита за расчетный период (месяц).

При превышении лимита энергии размыкаются контакты встроенного расцепителя, и нагрузка отключается. В статусе состояния счётчика фиксируется ошибка. При этом на ЖКИ счётчика отображается сообщение "OFF LE. В соответствующий журнал событий фиксируются дата и время превышения энергии, значение лимита энергии. Информация о событии фиксируется в журнал независимо от настроек конфигурации счётчика.

Для подключения нагрузки достаточно обнулить значение лимита, установить большее значение лимита или отключить функцию конфигурации счетчика и отправить команду по интерфейсу. В статусе состояния счётчика снимается ошибка о превышении лимита энергии. В режиме лимита за расчетный период (месяц) при переходе в следующий месяц количество потребляемой энергии восстанавливается, и нагрузка подключается автоматически.

Счётчик осуществляет информирование миганием подсветкой и звуковым сигналом (1 раз в 10 секунд) о приближении к лимиту энергии. В качестве параметра информирования задается коэффициент, равный доле от значения лимита. По умолчанию, коэффициент равен 90% от значения лимита мошности.

- 1.7.7 Счётчик позволяет вести учет по отдельному тарифу в период превышения лимита мощности или лимита энергии. Для этого необходимо активировать соответствующую функцию конфигурации счетчика и выбрать условие превышения.
- 1.7.8 Счётчик отключает нагрузку при обнаружении неравенства токов в фазном и нулевом проводе. Для этого необходимо активировать соответствующую функцию в конфигурации счетчика и установить время срабатывания встроенного расцепителя. При возникновении в диапазоне от 0,051₀ до I_{макс} разности токов в фазном и нулевом проводе счётчика более 3% производится информирование звуковым сигналом (1 раз в 2 секунды). При обнаружении неравенства токов в течение установленного времени контакты встроенного расцепителя размыкаются, и нагрузка отключается. На ЖКИ счётчика появляется сообщение "oFF dl". В статусе состояния счётчика фиксируется ошибка и в соответствующий журнал событий фиксируются дата и время начала и окончания неравенства токов. Информация о событии фиксируется в журнал независимо от настроек конфигурации счётчика.

Подключение нагрузки осуществляется только командой по интерфейсу.

1.7.9 Счётчик имеет возможность подключения нагрузки автоматически или длительным нажатием кнопки в случае отключения нагрузки по причине превышения лимита мощности (см. п.1.7.5). Для работы функций необходимо установить время задержки подключения нагрузки и активировать функции подключения в конфигурации счетчика. После окончания превышения лимита мощности начинается отсчет времени задержки автоматического подключения нагрузки. В зависимости от установленной конфигурации по истечению времени задержки нагрузка подключается автоматически или появляется возможность подключения нагрузки длительным (более 3 секунд) нажатием кнопки.

1.7.10 Счётчик отключает нагрузку при обнаружении сильного магнитного поля с индукцией более 300 мТл непрерывно в течение 10 секунд. Для этого необходимо активировать соответствующую функцию в конфигурации счетчика.

При обнаружении магнитного поля в статусе состояния счётчика фиксируется ошибка, производится информирование звуковым сигналом (1 раз в 2 секунды) и на ЖКИ счётчика появляется сообщение "FIELD". По истечению 10 секунд воздействия контакты расцепителя размыкаются, нагрузка отключается и на ЖКИ выводится сообщение "OFF LF". В соответствующий журнал событий фиксируются дата и время начала и окончания воздействия магнитным полем. Информация о событии фиксируется в журнал независимо от настроек конфигурации счётчика.

Подключение нагрузки осуществляется командой по интерфейсу или автоматически спустя 10 минут после окончания воздействия магнитным полем. Для автоматического подключения нагрузки требуется активировать соответствующую функцию в конфигурации счётчика.

1.7.11 Исполнения счётчика с интерфейсом ЕІА 485 и встроенным модемом имеют функцию режима Master. Для этого необходимо активировать соответствующую функцию в конфигурации счетчика.

В режиме Master посылка с неверным адресом, поступающая по EIA 485, отправляется в порт модема. Ответ принимается по порту модема и отправляется счётчиком по интерфейсу EIA 485. Таким образом, осуществляется обмен с другими приборами учёта. Аналогично, при приёме посылки по порту модема.

При получении посылки в режиме Master с корректным адресом счётчик осуществляет обмен по интерфейсу в обычном режиме.

1.7.12 Возможные ошибки, события и параметры звукового информирования описаны в пп. 1.7.4-1.7.6, 1.7.8, 1.7.10. Для отключения звукового сигнала нажать на 2 кнопки счётчика одновременно.

В режиме "Тихой" работы не производится звуковое информирование о наличие ошибки или воздействия на счётчик.

- 1.7.13 Счётчик позволяет осуществлять коррекцию времени на ±9 секунд один раз в день командой по интерфейсу. Для коррекции времени не требуется снимать крышку клеммной колодки или устанавливать функцию удаленного программирования.
- 1.7.14 Счётчик измеряет параметры для контроля качества электроэнергии отклонения напряжения и частоты сети в соответствии с ГОСТ 32144-2013, и сохраняет в журналах событий информацию:
- о выходе напряжения за установленные пределы, с указанием величины отклонения напряжения;

о выходе частоты за установленные пределы, с указанием величины отклонения частоты

Счётчик сохраняет в память длительность отклонений напряжения и частоты от установленных пределов в секундах за текущие сутки, за 127 предыдущих дней.

По умолчанию, в счётчик установлены нормы для расчета параметров качества электроэнергии в соответствии с ГОСТ 32144-2013.

1.8 Устройство и работа

1.8.1 Счётчик состоит из электронного модуля, размещенного в корпусе. Корпус счётчика состоит из цоколя с клеммной колодкой, предназначенной для подключения прибора к однофазной сети, кожуха (верхней крышки) с окном, позволяющим визуально снимать показания и просматривать служебную информацию, выводимую на ЖКИ, крышки отсека коммуникационных модулей и крышки клеммной колодки закрывающей доступ к винтовым зажимам колодки. На клеммной колодке счётчика размещаются датчики тока. На кожухе счётчика размещены кнопки, предназначенные для смены кадров индикации. Под кожухом размещены электронная пломба крышки клеммной колодки, предназначенная для фиксации фактов снятия и установки крышки, и электронная пломба корпуса счётчика, предназначенная для фиксации фактов вскрытия счётчика.

Функциональная схема счётчика приведена на рисунке 2.

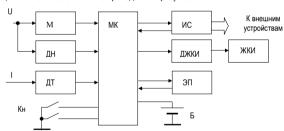


Рисунок 2 Функциональная схема счётчика

Счётчик состоит из следующих функциональных узлов:

- модуля питания (МП), преобразующего входное переменное напряжение в постоянное, необходимое для питания всех функциональных узлов счётчика;
- микроконтроллера (МК) осуществляющего измерения входных сигналов, вычисления значений потребляемой энергии, мощности, сохранение значений потребленной энергии в памяти данных, вывод данных на индикатор, обмен данными с внешними устройствами, отсчет текущего времени, и управление работой прочих узлов счётчика;

- датчиков тока (ДТ) и напряжения (ДН), преобразующих входные сигналы тока и напряжения в сигналы напряжения низкого уровня, подаваемые на вход аналогоцифрового преобразователя входящего в состав микроконтроллера;
- энергонезависимой памяти (ЭП), в которой микроконтроллер сохраняет параметры калибровки, константы пользователя, результаты измерений и журналы событий;
- ЖКИ, предназначенного для индикации результатов измерений, текущих времени и даты, служебной информации;
- литиевой батареи (Б) выполняющей функции резервного источника питания и позволяющей вести отсчет текущего времени при пропадании основного питания;
- интерфейсных схем (ИС), служащих для преобразования логических уровней сигналов ТТL в логические уровни интерфейсных сигналов и обратно;
- кнопок (КН), посредством которых пользователь осуществляет управление работой индикатора и разрешение записи параметров в память данных счётчика или в регистры часов реального времени.

В составе микроконтроллера имеется измерительно-вычислительное ядро, состоящее из входных усилителей с изменяемым коэффициентом усиления, фильтров верхних частот с частотой среза около 16 Гц, четырёх сигма-дельта АЦП и вычислителя. АЦП осуществляют измерение мгновенных значений сигналов тока и напряжения, на основе измеренных значений входных сигналов в ядре осуществляется вычисление среднеквадратичных значений тока и напряжения, значений активной и реактивной мощностей, частоты сети, фактора активной мощности, активной и реактивной энергий. Вычисление активной мощности осуществляется путём перемножения мгновенных выборок сигналов тока и напряжения с последующим их интегрированием. Из вычислительного ядра микроконтроллер считывает среднеквадратичные значения сигналов тока и напряжения, значения активной и реактивной мощностей. Активная и реактивная энергия вычисляется путём интегрирования по времени соответствующих мощностей и считывается микроконтроллером с последующим суммированием считанных значений.

1.9 Маркировка и упаковка

1.9.1 Маркировка счётчиков соответствует ГОСТ 31818.11-2012 и чертежам предприятия-изготовителя.

1.9.2 На шиток счётчика наносится следующая информация:

- условное обозначение счётчика;
- класс точности по ГОСТ 31819.21-2012;
- постоянная счётчика в имп/кВт•ч:
- этикетка содержащая номер счётчика по системе нумерации предприятияизготовителя, год производства, артикул и штрих-код содержащий вышеперечисленную информацию;
- базовый и максимальный ток:
- номинальное напряжение:
- номинальная частота;

- номинальный размыкаемый ток по ГОСТ 61038 (для исполнений счётчиков с расцепителем);
- количество измерительных элементов, и вид сети, к которой подключается счётчик в соответствии с ГОСТ 25372 - 95;
- товарный знак предприятия-изготовителя;
- год изготовления счётчиков;
- ГОСТ 31818.11-2012 и ГОСТ 31819.21-2012;
- ГОСТ 31819.23-2012, для исполнений НЕВА МТ 115, имеющих функцию измерения реактивной энергии;
- изображение знака утверждения типа средств измерений в соответствии с действующим законодательством;
- изображение единого знака обращения продукции на рынке государств членов Таможенного союза;
- знак двойного квадрата обозначающего класс защиты II;
- испытательное напряжение изоляции;
- надпись Сделано в России.

Допускаются дополнительные обозначения и надписи на щитке, корпусе или крышке клеммной колодки в соответствии с конструкторской документацией и требованиями договора на поставку.

- 1.9.3 На крышке клеммной колодки счётчика нанесена схема подключения счётчика к сети и схема подключения интерфейсных и испытательных выходов.
- 1.9.4 Опломбирование кожуха счётчика осуществляется после проведения поверки с помощью пломбировочной проволоки, продетой в отверстия винтов крепления кожуха счётчика, и пломбы, навешиваемой на проволоку с последующим её обжатием.
- 1.9.5 Опломбирование крышки клеммной колодки счётчика осуществляется после установки счётчика на месте эксплуатации с помощью пломбировочной проволоки, продетой в отверстие винта крепления крышки и отверстие на кожухе, и пломбы, навешиваемой на проволоку с последующим её обжатием.
- 1.9.6 Опломбирование отсека коммуникационных модулей счётчиков НЕВА МТ 115 осуществляется после установки модема и батарейки с помощью пломбировочной проволоки, продетой в отверстие крышки отсека коммуникационных модулей и отверстие на кожухе, и пломбы, навешиваемой на проволоку с последующим обжатием.
- 1.9.7 Маркировка потребительской тары соответствует чертежам предприятияизготовителя и содержит следующие сведения:
- товарный знак предприятия-поставщика;
- адрес предприятия-изготовителя:
- гарантийный срок:
- надпись "Сделано в России";
- наименование и условное обозначение счётчика:
- ГОСТ 31818 11-2012 и ГОСТ 31819 21-2012⁻
- ГОСТ 31819.23-2012, для исполнений НЕВА МТ 115, имеющих функцию измерения реактивной энергии;
- обозначение настоящих ТУ TACB.411152.002.01 ТУ;

- изображение знака утверждения типа средств измерений в соответствии с действующим законодательством;
- изображение единого знака обращения продукции на рынке государств членов Таможенного союза;
- артикул;
- штрих-код EAN-13;
- код региона, которому соответствует тарифное расписание, записанное в память счётчика
- дата поверки.
- 1.9.8 Маркировка транспортной тары должна соответствовать ГОСТ 14192 96 и чертежам предприятия-изготовителя.
- 1.9.9 На транспортной таре должен быть ярлык, выполненный типографским способом с манипуляционными знаками "Хрупкое-Осторожно", "Беречь от влаги", "Вверх" и ярлык с основными, дополнительными и информационными надписями по ГОСТ 14192 96.
- 1.9.10 Ярлыки на транспортной таре должны быть расположены согласно ГОСТ 14192 96.
- 1.9.11 Упаковывание счётчиков, эксплуатационной и товаросопроводительной документации должно производиться в соответствии с чертежами предприятия-изготовителя.
- 1.9.12 Эксплуатационная документация должна быть вложена в потребительскую тару вместе со счётчиком.
- 1.9.13 Упакованные в потребительскую тару счётчики должны быть уложены в транспортную тару, представляющую собой ящик картонный соответствующий чертежам предприятия изготовителя.
- 1.9.14 В ящик должна быть вложена товаросопроводительная документация, в том числе упаковочный лист, содержащий следующие сведения:
- наименование и условное обозначение счётчиков и их количество;
- дату упаковывания;
- подпись ответственного за упаковку.
- 1.9.15 Габаритные размеры и масса брутто должны соответствовать документации предприятия-изготовителя.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 Запрещается пропускать через цепи счётчика ток, превышающий максимально допустимый, значение которого указано на щитке счётчика, и приведено в эксплуатационной документации.
- 2.1.2 Запрещается подавать на счётчик напряжение, превышающее Uном + 15%. Повышенное напряжение может стать причиной выхода счётчика из строя.
- 2.1.3 Запрещается размещать счётчик вблизи отопительных приборов.
- 2.1.4 Подключение счётчиков к сети должно производиться только с помощью медных проводов или алюминиевых, обжатых в наконечник штыревой втулочный (HШВ), изготовленный из луженой меди. Максимальный крутящий момент затяжки винтов в зажимы клеммной колодки для HEBA МТ 115 5(100)А составляет 3.15 Н*м, для оставльных счётчиков 1.6 Н*м.
- 2.1.5 Минимально допустимый диаметр одножильных проводников для подключения счётчика HFRA MT 115 2 мм

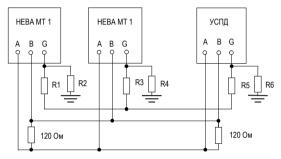
2.2 Подготовка к эксплуатации

- 2.2.1 Подключать счётчик к сети необходимо только при отсутствии в сети напряжения.
- 2.2.2 Прижим каждого из проводов сети должен осуществляться двумя винтами зажима клеммной колодки. Прижим проводов должен быть надежным во избежание перегрева места присоединения.
- 2.2.3 Перед установкой счётчика произвести внешний осмотр убедиться в отсутствии механических повреждений корпуса и крышки клеммной колодки, в наличии всех винтов зажимов клеммной колодки, целостности пломб на винтах крепления кожуха.
- 2.2.4 Провода, подключаемые к счётчику очистить от изоляции на длину не меньшую чем глубина отверстия зажимов колодки.
- 2.2.5 Подключение счётчика производить в соответствии со схемами подключения приведенными на крышке клеммной колодки или в приложении Б, предварительно убедившись в отсутствии напряжения в сети.
- 2.2.6 Подключение испытательного выхода счётчика производить в соответствии со схемой, приведенной на рисунке Приложения Б.

Оконечный каскад испытательного выхода - транзистор с открытым коллектором, поэтому при подключении испытательных выходов на контакты клеммника Y через токоограничивающий резистор R1 подается положительное напряжение относительно контакта «общий» - G.

Сопротивление резистора рассчитывается по формуле:

$$R = \frac{U+1,5V}{I}$$


где U – напряжение питания импульсного выхода;

I – ток, протекающий через открытый транзистор импульсного выхода.

Значение тока может быть любым в диапазоне от 1 мА до 30 мА. При этом необходимо учитывать, что мощность резистора должна быть не менее:

$$P = 2 \times U \times I$$

Аналогично подключается выход проверки точности хода часов, контакты S, G. 2.2.7 Подключение счётчика к интерфейсу EIA 485 производить в соответствии со схемой, приведенной на рисунке 3.

УСПД – устройство сбора и передачи данных.

Рисунок 3 Схема подключения счётчиков к интерфейсной линии EIA 485

На концах линии устанавливаются резисторы 120 Ом соответствующие волновому сопротивлению линии. Вывод общий подключается через резисторы R1...R6 номиналом 100 Ом к общему проводу и к заземлению для предотвращения протекания больших токов по общему проводу. Мощность резисторов должна быть не менее 1 Вт. Данные резисторы необходимы в случае большой протяжённости линии, то есть в том случае если потенциал «земли» в местах установки счётчиков может оказаться различным. При протяжённой линии и в условиях помех для повышения помехозащищенности рекомендуется линию «А» соединить через резистор номиналом 1...3 кОм с положительным контактом источника питания напряжением 5 В, линию «В» через резистор такого же номинала с отрицательным контактом источники сточники контактом источники

2.2.8 Подать на счётчик напряжение и убедиться, что на ЖКИ выводятся значения потребляемой энергии, время и дата в счётчике, соответствуют текущим значениям, а действующий тариф соответствует тарифному расписанию. В противном случае необходимо установить текущие значения времени и даты и ввести действующее тарифное расписание. Задание вышеперечисленных параметров осуществляется через оптический порт или цифровой интерфейс.

Если на ЖКИ счётчика после включения питания информация отсутствует необходимо убедиться в наличии напряжения на контактах фазного и нулевого проводников. Если на счётчик подано напряжение, а информация на ЖКИ отсутствует необходимо направить счётчик в ремонт.

При подключенной к сети нагрузке светодиод импульсного оптического выхода должен мигать с частотой соответствующей мощности нагрузки. При отсутствии световых импульсов необходимо убедиться в правильности подключения счётчика. Если счётчик подключен правильно и подключена нагрузка, но световые импульсы отсутствуют необходимо направить счётчик в ремонт.

- 2.2.9 Убедиться в работоспособности неопломбированной кнопки. При нажатии на неё информация на ЖКИ должна меняться.
- 2.2.10 Для корректной работы счётчика в память счётчика необходимо записать тарифные расписания, текущие значения времени и даты, при необходимости даты начала сезонов и даты исключительных дней с указанием тарифных расписаний действующих в эти дни. Запись параметров пользователя в счётчик осуществляется через оптический порт счётчика или через интерфейс удалённого доступа. Перед программированием необходимо снять крышку клеммной колодки счётчика, при этом на ЖКИ появится символ открытого замка.

2.3 Эксплуатация счётчика

2.3.1 После подачи на счётчик напряжения и подключения нагрузки счётчик ведёт учёт потребляемой энергии, сохраняет измеренные значения в памяти, выводит их на ЖКИ. Информация на ЖКИ выводиться циклически в автоматическом режиме или может просматриваться перелистыванием кадров индикации с помощью кнопок на лицевой панели счётчиков.

Набор кадров индикации выводимых в циклическом режиме может быть выбран произвольно при программировании счётчика.

Информацию со счётчика можно считывать, используя цифровые интерфейсы. Оптический порт предназначен для локального считывания данных с помощью оптической головки соответствующей ГОСТ IEC 61107-2012. Интерфейс EIA 485, радиомодем, GSM модем, PLC модем и другие используются для дистанционного считывания данных.

- 2.3.2 На индикаторе могут появляться следующие спецсимволы:
- символ открытого замка, означает разрешение программирования (снятие крышки клеммной колодки);
- символ пустого открытого замка, означает вскрытие счётчика (снятие кожуха);
- символ ромба со стрелкой, выводится в момент обмена по интерфейсу;
- символ батареи, сообщает о снижении напряжения батареи ниже допустимого уровня, необходима замена батареи;
- символ магнита, выводится при обнаружении сильного магнитного поля;
- символ генерации выводится при протекании тока в обратном направлении:
- символ реле, появляется на ЖКИ в случае отключения потребителя от сети;
- символ восклицательного знака в треугольнике, означает ошибку.

Символ ошибки 🕰 выводится на индикатор в случаях:

- превышения установленных лимитов напряжения, мощности, энергии;
- обнаружении неравенства токов в фазном и нулевом проводе;
- обнаружении обратного тока.
- 2.3.3 Расположение информации на ЖКИ счётчика.

Рис. 4 Расположение информации на индикаторе

Счётчик оснащен двумя кнопками для удобного просмотра кадров индикации. Слева располагается кнопка 1, справа - кнопка 2. Переход между Меню или кадрами в Меню может осуществляться как короткими, так и длительными нажатиями.

Меню счётчика состоит из 9 групп параметров. Функции кнопок могут отличаться для различных групп параметров.

2.3.4 Просмотр данных, выводимых на ЖКИ счётчика. Основные положения.

Переключение кадров пользовательской индикации в циклическом режиме осуществляется короткими нажатиями кнопки 1 и 2 в прямой и обратной последовательности, соответственно.

Для выхода из пользовательской индикации и отображения заглавного кадра Меню 1 (см. рис. 5) длительно нажать кнопку 2. Для перехода на заглавный кадр следующего или предыдущего меню коротко нажать кнопку 2 или кнопку 1. соответственно.

Для просмотра кадров определенной группы параметров длительно нажать кнопку 2 из заглавного кадра выбранного Меню.

Просмотр кадров группы параметров в Меню зациклен. Окончание просмотра Меню обозначает кадр "End", представленный на рис. 5.

Возврат в пользовательскую индикацию осуществляется автоматически, через 1 минуту после последнего нажатия на кнопку.

Рис. 5 Последний кадр Меню

Рис. 6 Заглавные кадры Меню 1 - 9

2.3.5 Описание кадров индикации Меню.

МЕНЮ 1 - 6 (Энергетические параметры и максимальные мощности)

Первый кадр Меню 1 представлен на рис. 7.

Рис. 7 Меню 1 Кадр 1. Энергия активная нарастающим итогом всего. в кВт ч

Для просмотра значений энергии нарастающим итогом всего за предыдущий месяц из кадра 1 Меню 1 коротко нажать кнопку 2 (см. рис. 8). Счётчик выводит на ЖКИ данные о потреблении за 12 поедыдущих месяцев.

Рис. 8 Меню 1 Кадр 6. Энергия активная нарастающим итогом всего за предыдущий месяц, в кВт ч

Для просмотра значений энергии нарастающим итогом по тарифам за расчетный период коротко нажать кнопку 1.

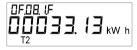


Рис. 9 Меню 1 Кадр 2. Энергия активная нарастающим итогом по тарифу 1 (День), в кВт ч

Длительным нажатием кнопки 1 на ЖКИ возвращается кадр энергии нарастающим итогом всего за отсчетный период.

Длительным нажатием кнопки 2 на ЖКИ возвращается заглавный кадр Меню.

Аналогично устроена работа кнопок для просмотра данных с кадров Меню 2-6. Первые кадры меню 2-6 представлены на рис. 10.

Меню 2 кадр 1. Энергия реактивная положительная нарастающим итогом всего, в квар ч

Меню 3 кадр 1. Энергия реактивная отрицательная нарастающим итогом всего, в квар ч

Меню 4 кадр 1. Максимальная активная мощность, усредненная на заданном интервале в текущем месяце, в кВт

Меню 5 кадр 1. Максимальная реактивная положительная мощность, усредненная на заданном интервале в текущем месяце, в квар

Меню 6 кадр 1. Максимальная реактивная отрицательная мощность, усредненная на заданном интервале в текущем месяце, в квар

МЕНЮ 7 (Параметры сети)

Первый кадр Меню представлен на рисунке 11.

Рис. 11 Меню 7 кадр 1. Мощность активная, в Вт

Для просмотра информации о других измеряемых параметров сети коротко нажать кнопку 2. Длительным нажатием кнопки 2 на ЖКИ возвращается заглавный кадр Меню.

Обозначение кадров с измеряемыми параметрами Меню 7:

Меню 7 кадр 1, "10.07.0.F" – мощность активная, в Вт;

Меню 7 кадр 2, "03.07.1.F" – мощность реактивная, в вар;

Меню 7 кадр 3, "09.07.0.F" - мощность полная, в ВА;

Меню 7 кадр 4, "0C.07.0.F" – среднеквадратическое значение напряжения на параллельной шепи счётчика. в В:

Меню 7 кадр 5, "0b.07.0.F" – среднеквадратическое значение тока, протекающего в цепи фазного провода, в А;

Меню 7 кадр 6, "5b.07.0.F" – среднеквадратическое значение тока, протекающего в цепи нулевого провода, в А;

Меню 7 кадр 7, "0E.07.1.F" - частота сети, в Гц;

Меню 7 кадр 8, "0d.07.F.F" – фактор активной мощности:

L – индуктивная, С - емкостная;

Меню 7 кадр 9, "60.09.0.F" – температура в корпусе счётчика, в градусах Цельсия; Меню 7 кадр 10, "60.06.3.F" – напряжение батареи, в В.

МЕНЮ 8 (Временные параметры)

Первый кадр Меню представлен на рисунке 12.

Рис. 12 Меню 8 кадр 1. Дата в формате ддммгг

Для перехода к следующему кадру, а также начальному кадру подгруппы кадров, коротко нажать кнопку 2. Дпительным нажатием кнопки 2 на ЖКИ возвращается заглавный кадр Меню. Просмотр кадров в подгруппе осуществляется коротким нажатием кнопки 1. Длительным нажатием кнопки 1 из любого кадра в подгруппе возвращается начальный кадр подгруппы.

Рис. 13 Меню 8 кадр 2. Время в формате чч:мм:сс

Рис. 14 Меню 8 кадр 3. Кадр ручной коррекции времени: 0 – коррекция запрешена. 1 – коррекция разрешена

В Меню 8 входит подгруппа кадров с информацией о дате последнего события, содержащая 6 кадров:

Меню 8 кадр 4, "63.61.1.1" – начальный кадр подгруппы. дата последнего отключения питания:

Меню 8 кадр 5, "63.62.1.1" – дата последнего программирования параметров;

Меню 8 кадр 6, "63.62.2.1" – дата последнего изменения даты и времени;

Меню 8 кадр 7, "63.62.7.1" - дата последнего снятия крышки клеммной колодки;

Меню 8 кадр 8, "63.62.8.1" – дата последнего воздействия магнитного поля;

Меню 8 кадр 9. "63.62.b.1" – дата последнего вскрытия корпуса счётчика.

Рис. 15 Меню 8 кадр 4. Начальный кадр подгруппы. Дата последнего отключения питания в формате ддммгг

В Меню 8 входит подгруппа кадров с информацией о тарифных зонах суток и действующих тарифах, содержащая 8 кадров:

Меню 8 кадр 10, "0A.01.1.F" – начальный кадр подгруппы. время начала тарифной зоны 1, номер тарифа;

Меню 8 кадр 11, "0А.01.2.F" – время начала тарифной зоны 2, номер тарифа;

Меню 8 кадр 17. "ОА.01.8.F" – время начала тарифной зоны 8. номер тарифа:

Рис. 16 Меню 8 кадр 10. Начальный кадр подгруппы. Время начала тарифной зоны 1 с указанием номера тарифа

МЕНЮ 9 (Установленные параметры)

Переход к следующему кадру, а также начальному кадру подгруппы кадров, производится коротким нажатием кнопки 2. Длительным нажатием кнопки 2 на ЖКИ возвращается заглавный кадр Меню. Просмотр кадров в подгруппе осуществляется коротким нажатием кнопки 1. Длительным нажатием кнопки 1 из любого кадра в подгруппе возвращается начальный кадр подгруппы. Первый кадр Меню 9 является начальным кадром подгруппы, состоящей из двух кадров (см. рис. 17). На кадре 1 отображается первые 4 цифры 8-мизначного адреса, на кадре 2 – последние 4 цифры адреса.

Рис. 17 Меню 9 кадр 1 (слева) и 2 (справа). Сетевой адрес счётчика

На третьем кадре меню отображаются настройки сезона и автоматической коррекции времени.

Рис. 18 Меню 9 кадр 3. Разряд 1 - запрет/разрешение перехода на сезонное время: 0 - переход запрещен; 1 - переход разрешену, разряд 2, 3 автоматическая коррекция времени (диапазон от минус 19 до 19 ppm)

На кадрах 4 – 11 размещены 4 подгруппы по 2 кадра, отображающие параметры установленных порогов напряжения, лимита мощности и лимита энергии:

Меню 9 кадр 4, "0С.23.0.0" – начальный кадр подгруппы. Нижний порог напряжения:

Меню 9 кадр 5, "0C.2C.0.0" – время усреднения для нижнего порога напряжения; Меню 9 кадр 6, "0C.1F.0.0" – начальный кадр подгруппы. Верхний порог напряжения:

Меню 9 кадр 7, "0C.2b.0.0" – время усреднения для верхнего порога напряжения;

Меню 9 кадр 8, "0F.23.0.0" - начальный кадр подгруппы. Лимит мощности;

Меню 9 кадр 9, "0F.2C.0.0" – время усреднения лимита мощности;

Меню 9 кадр 10. "00.05.2.F" – начальный кадр подгруппы. Лимит энергии (рис. 19):

Меню 9 кадр 11, "00.05.2.1" – остаток энергии до значения лимита;

На кадре 10 (рис. 19) отображается установленное значение лимита энергии с указанием режима работы лимита (см. п.1.7.6). Признак "П" в первом разряде означает работу в режиме лимита энергии за расчетный период (месяц). При отсутствии признака действует лимит энергии нарастающим итогом за весь период эксплуатации.

Рис. 19 Меню 9 кадр 10. Начальный кадр подгруппы. Лимит Энергии.

На кадрах 12 и 13 отображаются запрограммированные скорости обмена по EIA 485 и встроенному модему, соответственно.

В Меню 9 входит подгруппа кадров с дополнительной информацией, содержащая 3 кадра:

Меню 9 кадр 14, "60.0d.1.0" – начальный кадр подгруппы. Дополнительная информация;

Меню 9 кадр 15, "60.0d.1.1" - дополнительная информация;

Меню 9 кадр 16. "60.0d.1.2" – дополнительная информация.

Счётчик позволяет выводить информацию на кадры 14 – 16 подсвечиванием любых сегментов индикации, показанных на рис. 4.

2.3.6 Счётчик выводит на индикатор сообщения:

OFF LU 1 – отключение нагрузки по причине снижения напряжения ниже допустимого;

OFF LU 2 – отключение нагрузки из-за превышения верхнего порога напряжения;

0FF LP – отключение нагрузки из-за превышения лимита мощности на программируемом интервале усреднения;

OFF LE – отключение нагрузки из-за превышения лимита энергии на программируемом интервале усреднения;

OFF LF – отключение нагрузки по причине влияния магнитного поля в течение 10 с. В период воздействия магнитным полем на ЖКИ счетчика появляется сообщение FIELD, мигает подсветка;

OFF dI – отключение нагрузки по причине неравенства токов в фазном и нулевом проводе:

OFF LOAD – отключение нагрузки командой по интерфейсу.

2.4 Техническое обслуживание

Техническое обслуживание счётчика на месте установки заключается в периодической проверке правильности его функционирования и точности отсчёта времени, а также проверке надёжности прижима токоподводящих проводников. В случае возникновения нарушений в работе счётчик должен быть направлен в ремонт.

Корректировка времени и изменение тарифного расписания в счётчике, должны осуществляться уполномоченными представителями энергоснабжающих организаций. После изменения тарифного расписания информацию о нём необходимо занести в паспорт счётчика или внести в паспорт наименование документа содержащего информацию о внесённом тарифном расписании.

Для программирования и считывания параметров используется программа параметризации счётчиков НЕВА МТ. Программное обеспечения для параметризации счётчиков высылается по запросу в адрес организаций, занимающихся обслуживанием и ремонтом счётчиков НЕВА МТ.

Пользователь имеет возможность вручную корректировать время на \pm 30 секунд один раз в неделю. Для коррекции времени необходимо перейти в меню 8 (Временные

параметры), выбрать третий кадр — кадр ручной коррекции времени (рис. 14) и длительно нажать кнопку 1. Если в момент коррекции времени количество секунд на кадре менее 30, то обнулятся секунды, если более 30 секунд, то обнулятся секунды и прибавится 1 минута. Корректировать время можно один раз в неделю.

Если часы счётчика отстают на N секунд, то короткое нажатие на кнопку 1 должно осуществляться за N секунд до перехода секунд в часах счётчика через ноль. Если часы счётчика спешат на N секунд, то короткое нажатие на кнопку 1 должно осуществляться через N секунд после перехода секунд через ноль. Величина N должна быть менее 30 секунд.

Счетчик имеет возможность автоматической коррекции точности хода часов (Меню 9 кадр 3, рис. 18). Если часы отстают, то вводится положительная коррекция, если спешат отрицательная. Пределы коррекции в диапазоне от минус 19 до плюс 19ppm, что составляет приблизительно ± 1,6 с/сут. Программирование коэффициента автоматической коррекции производится в программе параметризации счётчиков НЕВА МТ.

Появление на ЖКИ счётчика символа батареи говорит о необходимости замены литиевого источника питания. В счётчиках используется литиевый элемент ER14250, рекомендуемая замена TLL-5902-PT2 (Tadiran) или ER14250 (EVE).

При замене, допускается использовать литиевые батареи аналогичные, установленным в счётчиках.

Для замены батареи счётчиков необходимо отключить питание и снять крышку отсека коммуникационных модулей. Заменить батарейку. Сборку счётчика осуществить в обратном порядке.

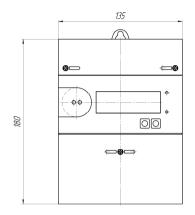
Занести в паспорт счётчика информацию о дате замены и организации производившей замену батареи, в часы счётчика записать текущие время и дату.

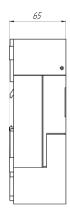
Для установки или замены SIM-карты в исполнениях счетчиков HEBA MT 115 с GSM-модемом необходимо отключить питание и снять крышку отсека коммуникационных модулей. Отсоединить корпус модема, установить или заменить SIM-карту.

С периодичностью не реже одного раза в год рекомендуется проверять надёжность соединения токоподводящих проводников с клеммной колодкой счётчика и производить подтяжку винтов.

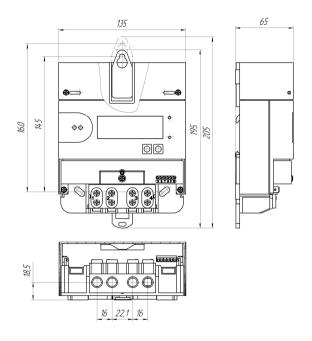
3 Транспортирование и хранение

- 3.1 Условия транспортирования счётчиков должны соответствовать ГОСТ 15150.
 Предельные условия транспортирования:
- максимальное значение температуры плюс 70 °C;
- минимальное значение температуры минус 50 °C;
- относительная влажность воздуха не более 95 % при температуре 30 °С.
- 3.2 Счётчики допускается транспортировать в закрытых транспортных средствах любого вида. При транспортировании самолетом счётчики должны размещаться в герметизированных, отапливаемых отсеках.
- 3.3 Счётчики до введения в эксплуатацию хранить на складах в упаковке при температуре окружающего воздуха от 0 до 40 $^{\rm 0}$ C и относительной влажности воздуха не более 80 % при температуре 35 $^{\rm 0}$ C.
- 3.4 В помещениях для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозионно-активных агентов для атмосферы типа 1 по ГОСТ 15150-69.


4 Поверка


Счётчик подвергается первичной поверке при выпуске из производства или после проведения ремонта и периодической через время не более межповерочного интервала.

Поверка проводится в соответствии с методикой поверки ТАСВ.411152.002.01 ПМ.


Внимание: Во время поверки счётчика рекомендуется произвести замену литиевой батареи. Информацию о замене батареи необходимо внести в раздел 5 паспорта счётчика

ПРИЛОЖЕНИЕ А

Внешний вид счётчиков НЕВА МТ 115

Установочные размеры счётчиков HEBA MT 115

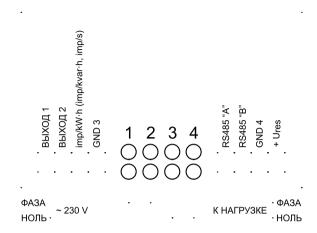


Схема подключения счётчика HEBA MT 115

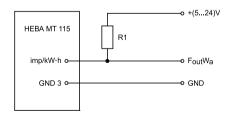


Схема подключения импульсного выхода счётчика НЕВА МТ115

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)83-90-72 Астана +7(1712)727-132 Астражань (8512)90-46-04 Бернауу (3852)73-04-60 Брянок (4832)59-03-52 Влацивостик (4832)59-03-52 Вологра (8122)249-28-31 Вологра (8122)241-59 Воронеж (473)204-51-73 Екатеринбург (43)384-55-9 Иваново (4932)77-34-65 9 Иваново (4932)77-34-6

Иркутск (395) 279-98-46

Казань (843):206-01-48 Калининграц (4012):72-03-81 Калуга (4842):92-23-67 Кемерово (3842):85-04-62 Киров (832):88-02-04 Красноара (681):203-40-90 Красноара (681):203-40-90 Красноара (681):203-40-90 Красноара (781):204-63-61 Курок (4712):77-13-04 Липецк (4742):25-201-73-13 Москтая (495):288-04-70 Мурманок (8152):95-64-93 Набереживе Четын (8552):20-53-41

Нижний Новгород (831)429-08-12

Новокучеци (3843)207-46-81 Новосибирок (383)227-86-73 Омох (3812)21-46-40 Орен (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермы (342)205-81-47 Ростов-на-Добу (863)308-18-15 Рэзань (4912)46-61-64 Самира (846)206-03-16 Самира (786)249-38-78 Севастополь (8682)22-31-93 Симферополь (3652)67-13-56

Таджикистан (992)427-82-92-69

Cωσπενα (4812)29-41-54 Cονи (862)225-72-31 Cтаврополь (8652)20-85-13 Cурлут (3462)7-98-35 Tверь (4822)8-31-35 Towac (3822)98-41-53 Tyna (4872)74-02-29 Tiowens (3452)96-21-18 Ульяновох (8422)24-23-59 Уфа (347)229-48-12 Χαδαροσοκ (4212)92-98-04 Челябинок (361)202-03-61 Череловец (8202)49-02-64 Ярославль (4852)98-52-98

Киргизия (996)312-96-26-47

26-47 Казахстан (772)734-952-31 Таджикиста Эл. почта: nvb@nt-rt.ru || Сайт: http://neva.nt-rt.ru/

