# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии электронные трехфазные НЕВА 3

#### Назначение средства измерений

Счетчики электрической энергии электронные трехфазные HEBA 3 (далее – счетчики) непосредственного или трансформаторного включения предназначены для измерения активной энергии в трёхфазных, трех- или четырехпроводных цепях переменного тока номинальной частоты 50 Гц.

### Описание средства измерений

Принцип работы измерительной схемы счетчиков основан на измерении и математической обработке сигналов тока и напряжения в каждой фазе, с последующим вычислением параметров потребления электрической энергии и выдачи этой информации в импульсном или числовом виде на счетный механизм. Результаты измерения сохраняются в счетном механизме счетчика и отображаются на жидкокристаллическом индикаторе (в дальнейшем ЖКИ) или барабанах электромеханического отсчетного устройства (в дальнейшем ЭМ ОУ).

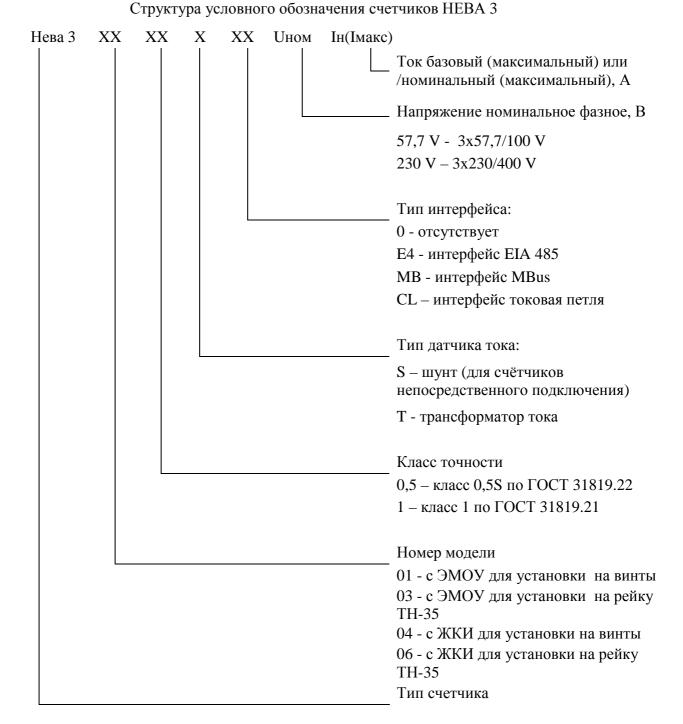
Счетчики состоят из: датчиков тока; датчиков напряжения; измерительных схем; блока питания; счетного механизма; оптического поверочного выхода; основного передающего устройства, совмещенного с электрическим испытательным выходом.

В качестве датчика тока в счетчиках используется трансформатор тока или низкоомный шунт. Датчик напряжения представляет собой резистивный делитель. Счётчики могут оснащаться электромеханическим счетным механизмом ЭМ ОУ или электронным счётным механизмом – микроконтроллером с памятью и ЖКИ.

Конструктивно счетчики выполнены в виде электронного модуля размещенного в корпусе с клеммной колодкой и крышкой клеммной колодки.

Счетчики могут иметь цифровой интерфейс для обмена информацией с внешними устройствами.

Счетчики имеют степень защиты от пыли и влаги IP51.


На корпусе и крышке клеммной колодки имеются конструктивные элементы позволяющие навешивать поверочную пломбу и пломбу энергоснабжающей организации. Счетчики имеют варианты исполнения:

- по классу точности 0,5S в соответствии с ГОСТ 31819.22-2012 и классу точности 1 в соответствии с ГОСТ 31819.21-2012;
- по типу подключения к электросети непосредственно или через трансформаторы;
- по типу счетного механизма электромеханический или электронный;
- по значениям базового/номинального и максимального токов
  - по типу корпуса и способу установки.

Обозначения счетчиков в зависимости от исполнения приведены в структуре условного обозначения.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноврск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Старрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93



#### Программное обеспечение

ПО счётчиков с электронным счетным механизмом, не является метрологическим, измерение энергетических параметров и параметров сети осуществляется измерительной микросхемой не содержащей встроенного ПО. Под управлением ПО осуществляется считывание информации о результатах измерения в цифровом или число-импульсном виде, выдача импульсов на двигатель ЭМОУ или сохранение результатов измерений в энергонезависимой памяти, индикация данных и передача информации, хранящейся в памяти счётчика, по интерфейсу.

Запись метрологических коэффициентов в память счётчика возможна только под управлением технологического оборудования, при установке аппаратной перемычки, после снятия пломб поверки.

Для считывания информации об энергопотреблении используется ПО Neva Read.

Характеристики программного обеспечения приведены в таблице 1. Таблица 1

| таолица т                 |                                   |                                            |                                                                                               |
|---------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|
| Наименование<br>ПО        | Идентификационное наименование ПО | Номер версии (идентифика ционный номер) ПО | Цифровой идентификатор ПО (контрольная сумма исполняемого кода, вычисленная по алгоритму MD5) |
| HEBA 304 1S0<br>5(60)A    | ТАСВ.411152.003-41.1 Д1           | V41.1                                      | 38C2F219F172C1999F158<br>E48A5A50240                                                          |
| HEBA 304 1S0<br>5(100)A   | ТАСВ.411152.003-42.1 Д1           | V42.1                                      | D565C3ED41FC5F0C0CC4<br>F2911BA43B07                                                          |
| HEBA 304 1SX<br>5(60)A    | ТАСВ.411152.003-43.1 Д1           | V43.1                                      | DCFB5D158C9ABFB8380<br>BDC4C06910CD4                                                          |
| HEBA 304 1SX<br>5(100)A   | ТАСВ.411152.003-44.1 Д1           | V44.1                                      | D381F67FA3FFC60C5B54<br>B70091401440                                                          |
| HEBA 304 XXT0<br>1(7,5)A  | ТАСВ.411152.003-45.1 Д1           | V45.1                                      | C282973749A03EB5D6804<br>ED4BD81B552                                                          |
| HEBA 304 XXT0<br>5(10)A   | ТАСВ.411152.003-46.1 Д1           | V46.1                                      | 0A79A19B9819CBF80180<br>AD265EFEBBFC                                                          |
| HEBA 304<br>XXTXX 1(7,5)A | ТАСВ.411152.003-47.1 Д1           | V47.1                                      | CC7FF488DF59261BD034<br>8DAC90A1B3CF                                                          |
| HEBA 304<br>XXTXX 5(10)A  | ТАСВ.411152.003-48.1 Д1           | V48.1                                      | 3991CD93D7C87D8E11D0<br>9DBFF1A88276                                                          |
| HEBA 306 1S0<br>5(60)A    | ТАСВ.411152.003-51.1 Д1           | V51.1                                      | 0C0F42113B77DB7928640<br>4CC641B01E2                                                          |
| HEBA 306 1S0<br>5(100)A   | ТАСВ.411152.003-52.1 Д1           | V52.1                                      | 5E8EDD2108ACB076A1C<br>E449CA6AF10ED                                                          |
| HEBA 306 1SX<br>5(60)A    | ТАСВ.411152.003-53.1 Д1           | V53.1                                      | 8EB82D58FF027A807A57<br>C847468BAC9D                                                          |
| HEBA 306 1SX<br>5(100)A   | ТАСВ.411152.003-54.1 Д1           | V54.1                                      | C61F3E0EF849138DDE11<br>D0F4249C0AEC                                                          |
| HEBA 306 XXT0<br>1(7,5)A  | ТАСВ.411152.003-55.1 Д1           | V55.1                                      | 8FA36A907DC801914238<br>B366F5A9038B                                                          |
| HEBA 306 XXT0<br>5(10)A   | ТАСВ.411152.003-56.1 Д1           | V56.1                                      | 82E681E9F26909B3A4A31<br>FDB95492749                                                          |
| HEBA 306<br>XXTXX 1(7,5)A | ТАСВ.411152.003-57.1 Д1           | V57.1                                      | 37C5DCBC856D64C3008E<br>5FC2F4F7A105                                                          |
| HEBA 306<br>XXTXX 5(10)A  | ТАСВ.411152.003-58.1 Д1           | V58.1                                      | 7967A76C7A8357B7EB2D<br>29D458AA402C                                                          |
| ПО NevaRead               | ТАСВ.411152.002-01 Д2             | V1.0                                       | 773628e07ec160797eb939e<br>a92c0590c                                                          |
| ПО NevaWrite              | ТАСВ.411152.002-02 Д2             | V1.0                                       | e4d8759c5a10abe3a079c58<br>0e117ace                                                           |

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – высокий.

Фотографии модификаций счётчика с местами опломбирования представлены на рисунке 1.

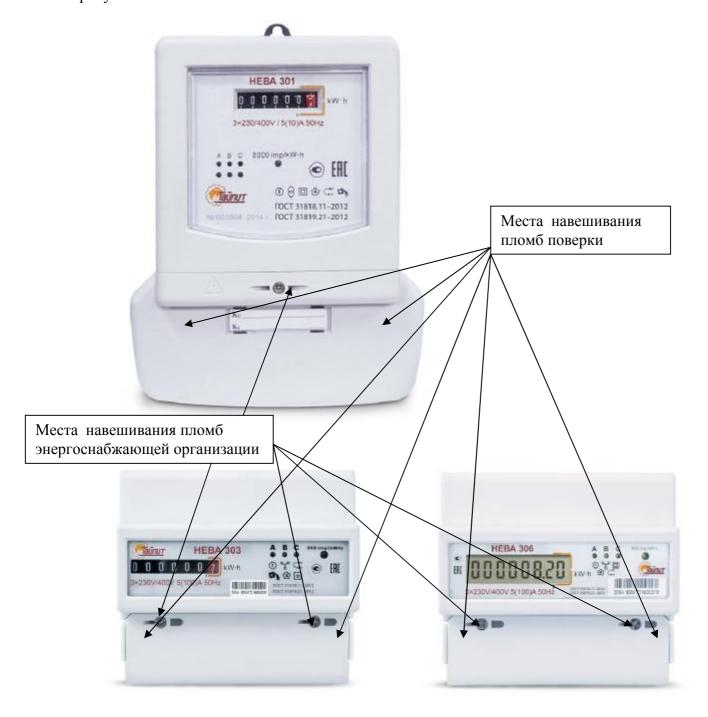



Рис.1 Счетчики электроэнергии трехфазные Нева 301, Нева 303, Нева 306 с указанием мест навешивания пломб.

**Метрологические и технические характеристики** Метрологические и технические характеристики приведены в таблице 2.

Таблица 2

| аолица 2                                                                        |                                                   |
|---------------------------------------------------------------------------------|---------------------------------------------------|
| Класс точности по ГОСТ 31819.21-2012                                            | 1                                                 |
| Класс точности по ГОСТ 31819.22-2012                                            | 0,5S                                              |
| TI D                                                                            | 3×57,7/100                                        |
| Номинальные напряжения, В                                                       | 3×230/400                                         |
| Рабочий диапазон напряжений                                                     | от 0,7 U <sub>ном</sub> до 1,2 U <sub>ном</sub>   |
| Базовый (максимальный) ток, А                                                   | 5(50); 5(60); 5 (100)                             |
| Номинальный (максимальный) ток, А                                               | /1 (7,5); /5 (10)                                 |
| Дополнительная погрешность счётчиков в рабочем                                  |                                                   |
| диапазоне напряжений от 0,7 U <sub>ном</sub> до 1,2 U <sub>ном</sub> , не более | 0,7                                               |
| %                                                                               | ·                                                 |
| Постоянная счетчика, имп/кВт-ч                                                  | 800, 1600, 8000 или 32000                         |
| Частота сети, Гц                                                                | 50±2,5                                            |
| Стартовый ток счётчиков                                                         |                                                   |
| Непосредственного подключения                                                   | $0,004~{ m I}_{ m 6}$                             |
| Трансформаторного подключения кл.т.1                                            | $0,002 \; { m I}_{{\scriptscriptstyle { m HOM}}}$ |
| Трансформаторного подключения кл.т.0.5S                                         | $0.001~\mathrm{I_{HOM}}$                          |
| Цена разряда счетного механизма, кВт·ч:                                         |                                                   |
| - младшего                                                                      | 0,1 или 0,01                                      |
| - старшего                                                                      | 100000 или 10000                                  |
| Полная мощность потребляемая:                                                   |                                                   |
| – в цепи напряжения не более, B·A                                               | 8,5                                               |
| – в цепи тока для счетчиков непосредственного                                   |                                                   |
| подключения не более, В-А                                                       | 0,1                                               |
| – в цепи тока для счетчиков трансформаторного                                   |                                                   |
| подключения не более, В-А                                                       | 0,3                                               |
| Активная мощность потребляемая                                                  |                                                   |
| в цепи напряжения не более, Вт                                                  | 2,0                                               |
| Рабочий диапазон температур, °С:                                                | от минус 40 до 60                                 |
| Относительная влажность воздуха при температуре                                 | 90                                                |
| 30°С, не более, %                                                               | 90                                                |
| Габаритные размеры (высота, ширина, глубина) не                                 |                                                   |
| более, мм для счетчиков:                                                        |                                                   |
| - с креплением на винты                                                         | 245×170×65                                        |
| - с креплением на рейку ТН-35                                                   | 115×125×65                                        |
| Масса не более, кг                                                              | 0,7                                               |
| Средняя наработка до отказа не менее, ч                                         | 280 000                                           |

### Знак утверждения типа

Знак утверждения типа наносится на щиток или корпус счетчика методом офсетной печати или другим способом, не ухудшающим качества и на титульном листе паспорта типографским способом.

#### Комплектность средства измерений

В комплект поставки входит:

- счетчик НЕВА 3 (одно из исполнений)
- паспорт ТАСВ.411152.003 ПС

1 шт.;

1 экз.;

Методика поверки ТАСВ.411152.003 ПМ высылается по требованию организаций производящих регулировку и поверку счетчиков.

### Поверка

осуществляется согласно документу TACB.411152.003 ПМ «Счетчики электрической энергии трехфазные HEBA 3. Методика поверки», утвержденному ФГУП «ВНИИМС» в июле 2014 года.

Перечень основного оборудования, необходимого для поверки:

- 1. Установка для проверки параметров электробезопасности GPI-725 (испытательное напряжение переменного тока до 5 кВ, испытательное напряжение для проверки сопротивления изоляции 500 В);
- 2. Установка автоматическая трехфазная для поверки счетчиков электрической энергии HEBA-Тест 6303 (класс точности 0,1; диапазон изменения напряжений 0...300/520 В; диапазон изменения выходного тока от 0,01 до 100 А);
- 3. Секундомер класс точности 1,0, цена деления 0,1 с, СДС-ПР1;
- 4. Частотомер электронно-счетный Ч3-63, измеряемая частота от 0,1  $\Gamma$ ц до 1 М $\Gamma$ ц, режим счёта импульсов.

#### Сведения о методиках (методах) измерений

Методика измерения отсутствует.

# Нормативные и технические документы, устанавливающие требования к счётчикам электрической энергии электронным трехфазным HEBA 3

ГОСТ 31818.11-2012 (МЭК 62052-11:2003) «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии»;

ГОСТ 31819.21-2012 (МЭК 62053-21:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2";

ГОСТ 31819.22-2012 (МЭК 62053-22:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S";

TACB.411152.003 ТУ «Счетчики электрической энергии электронные трехфазные HEBA 3. Технические условия».

# Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярс (801)203-40-90 Красноярс (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Ценза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповен (8202)49-02-64 Ярославль (4852)69-52-93

## https://neva.nt-rt.ru/ || nvb@nt-rt.ru